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Abstract
We extend the quasi-continuum method of approximation to the case of a
diatomic lattice. This is illustrated by a lattice in which both small and large
atoms interact with first- and second-nearest neighbours. We show that highly
accurate quasi-continuum techniques may be generalized to determine the shape
of nontopological kinks. Many previous analyses of such systems have found
travelling wave solutions only for one particular speed using a second-order
continuum theory; we show (i) how wave shapes can be found for arbitrary
speeds, and (ii) how solution profiles can be calculated from fourth-order partial
differential equations which approximate the lattice. Alongside the theoretical
analysis, we also present numerical simulations of the lattice which demonstrate
propagation of the predicted waves through the lattice. We show that the
particular speed for which solutions have been found in previous studies is
a special speed for waves in the lattice, but waves can travel for long periods of
time at faster or slower speeds, whilst slowly relaxing to this critical speed.

PACS numbers: 05.45.-a, 05.45.Gg, 05.50.+q

1. Introduction

This paper concerns the approximation of motion of a diatomic lattice using quasi-continuum
techniques. The nonlinearity present in such systems allows the existence of solitary
waves which are responsible for many important mechanisms in these systems, for example
energy localization and transport, and the motion of domain walls through crystal structures.
Unfortunately, many previous applications of quasi-continuum techniques have only yielded
approximations to solitary waves at one particular speed, since in diatomic lattices the small
and large atoms satisfy quite different equations of motion; the only exception we are aware of
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is that of Henry and Oitmaa [9]. The techniques described in this paper allow these problems
to be overcome, and the motions of the sublattices of small and large atoms to be determined
for waves travelling at arbitrary speeds.

Many papers have been written about the dynamics of nonlinear lattice problems, for a
good review of applications and basic theoretical methods, see Remoissenet [15]. Originally
motivated by extensive investigations of Fermi et al [8] and Zabusky and Kruskal [22], most
concern monatomic lattices. The use of quasi-continuum approximations in lattice problems
was initiated by Benjamin et al [1], Collins [2–4], and later developed by Rosenau [16], who
concentrated on the derivation of well posed partial differential equations as an intermediate
stage between the discrete lattice equations and finding the shape of solitary wave solutions.
The methods have since been generalized to yield approximations of greater accuracy [6,17],
to multidimensional lattices [7,19], lattices with second-neighbour interactions (SNIs) [13,18]
and lattices with on-site potentials [20].

Pnevmatikos et al [14] investigated the propagation of solitary waves along diatomic
chains; considering a model comprising just nonlinear first-neighbour interactions (FNIs),
they identified two types of mode: (i) an acoustic mode, in which close neighbours were
approximately in phase, and (ii) an optical mode, in which neighbouring atoms oscillated
almost exactly out of phase with each other. Their analysis was based on quasi-continuum
approximations, which converted the differential-difference equations into a coupled system
of two partial differential equations. Numerical simulations of both solution types were
performed, revealing small oscillations in the tails of these waves. Their model was extended
in [13] to include SNIs, and this model is comparable to the model that we consider. In their
papers the continuum equations were simplified using an inspirational, but ad hoc, decoupling
ansatz, which allowed the form of solitary waves to be found. Again, acoustic and optical
modes were identified; along with breather solutions for certain potentials and speeds.

Peyrard et al [12] investigated the propagation of solitary waves through a simpler
diatomic lattice, where nonlinear FNIs were replaced by linear springs, and an additional ‘on-
site’ nonlinear potential energy was introduced. Despite this simplification, their continuum
techniques still yielded a shape only for one particular speed. The propagation of (acoustic)
kinks through the lattice was the main theme of the paper. Numerical studies presented solved
a forced and damped diatomic lattice, illustrating the pinning of the kink for small values of
the forcing parameter. This model was later studied by Cretegny and Peyrard [5], who pointed
out deficiencies of quasi-continuum techniques in failing to capture any details on the Peierls–
Nabarro barriers. They then used collective coordinates to analyse the effects of discreteness
of the underlying lattice structure. Our new quasi-continuum techniques have been tested on
this lattice in [21]. Here we shall consider a slightly modified diatomic lattice without forcing
or damping, but will find the shape of the travelling solitary waves for general speeds. Henry
and Oitmaa [9] studied a similar system, with linear FNIs and an on-site potential for the
smaller atoms only. They used a second-order quasi-continuum technique to derive the form
of the solution for a variety of wave speeds. Finally we mention that Kofane et al [10] study
an electrical transmission line which is equivalent to a diatomic mass system with nonlinear
FNIs (no SNIs and no on-site potential). They also use continuum approximations and an
ansatz to separate the two parts of the system and so end up with a solvable equation for the
travelling wave. They go on to describe experimental results, wave interactions and recurrence
phenomena in the system.

This paper concerns a lattice with a number of complications: SNIs as well as FNIs, the
presence of a nonlinear on-site potential and the diatomic nature of the lattice, the final property
meaning that there are two displacement variables to find, namely the motion of the sublattices
of the larger and the smaller atoms. We shall address these issues by further generalizing
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Figure 1. Model system of small and large atoms; interactions with first- and second-nearest
neighbours are represented by springs with constants k, g and G.

the method of quasi-continuum approximations. Few papers have addressed the problems of
calculating the motion of a diatomic lattice, and those which have highlight limitations of the
available techniques. The most notable papers are by Peyrard et al [12]. In the next section,
we introduce and describe the model, and its basic equilibrium properties. Section 3 deals
with the simple second-order continuum theory, which is extended to fourth order in section 4.
The discrete system is then simulated numerically in section 5, which is followed by a final
section discussing the results of the paper.

2. Model

In this section we introduce the physical system and derive the governing equations. A simple
analysis of these equations identifies a combination of parameters with an associated critical
value, from which we find two types of equilibrium solution: a symmetric one for strong FNIs,
where each small atom is centred between two adjacent large atoms (illustrated in figure 4),
and a pair of asymmetric solutions in which each small atom is closely associated with one
or other of its neighbouring larger atoms. The latter case supports kink-type travelling wave
solutions, which are analysed in later sections of this paper. To be more specific, the lattice
under consideration here is composed of two types of atom: a large atom of mass M and a
small atom of massm, with interactions as illustrated in figure 1. It is assumed that the rest of
the lattice is close to its minimum-energy configuration; that is, all the large atoms lie in the
regular crystal structure and the associated small atoms lie close to the bottom of their potential
wells.

The cause of the interactions between first- and second-nearest-neighbour atoms in the
lattice is unimportant; they could be ionic or covalent bonds, or van der Waals forces etc. The
interactions will be modelled by a system of linear springs. The constants associated with these
springs reflect the relative strength of the many interactions each atom has with its neighbours,
thus influencing the frequency of small-amplitude disturbances about the atom’s equilibrium
position. It is assumed that atoms not in the particular chain under consideration influence
atoms within the chain through an ‘on-site’ potential.

The position of each atom in the single chain under consideration will be denoted using
the system of variables illustrated in figure 2. The variable φ2n(t) represents the displacement
of the large atom at position n relative to its equilibrium position and ψ2n+1(t) represents
the position of its neighbouring small atom relative to the midpoint of φ2n(t) and φ2n+2(t) at
equilibrium. Note that this means thatψ2n+1 = 0 does not necessarily represent the equilibrium
position of the small atom. For large atoms, this potential is assumed to have a single well;
for simplicity we take a quadratic shape, namely VH = ∑

n
1
2Hφ

2
2n. The on-site potential for

a small atom has the form of a double well since small atoms are assumed to closely associate
with one of the two neighbouring large atoms. The simplest function having such a shape is a
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Figure 2. Notation for the displacements of the atoms from equilibrium. The displacements of
the large atoms are denoted by φ2n, which is measured from their equilibrium positions (the dotted
lines). The displacements of the smaller atoms are measured from the midpoints of the equilibria
of large atoms (the solid lines). In this figure φ2n+2 < 0, φ2n+4 > 0, ψ2n−1 < 0 and ψ2n+1 > 0.

quartic, namely Vh = ∑
n

1
4h(ψ

2
2n+1 − ψ

2
)2. The Hamiltonian of the system is thus

H =
∑
n

{
1
2Mφ̇

2
2n + 1

2mψ̇
2
2n+1 + 1

2k(φ2n − ψ2n+1)
2 + 1

2k(φ2n − ψ2n−1)
2 + 1

2G(φ2n − φ2n+2)
2

+ 1
2g(ψ2n+1 − ψ2n−1)

2 + 1
2Hφ

2
2n + 1

4h(ψ
2
2n+1 − ψ

2
)2

}
. (2.1)

2.1. Minimum-energy configuration

The system is in its most stable (lowest-energy) state when all of the small atoms in the chain
are in the same energy well (either the left or right). Other stationary states are possible, and
will be investigated later. One example is that in the left part of the chain all the small atoms
are to the left of the closest large atom. In the right part of the chain they lie to the right side; in
between these two limits there is a transition region, where atoms lie between the two extremal
cases. In this example there is a deficit of small atoms over large atoms in the transition region.
Conversely the case can occur when in the left part of the chain all of the small atoms lie to the
right side of the closest large atom, and in the right part they lie to the left of the closest large
atom. In this case there is a surplus of small atoms over large atoms in the transition region.
These are illustrated in figure 5.

Before we consider these more complex stationary solutions and the motion of such
transition regions, let us consider the details of the minimum-energy configuration of (2.1).
At minimum energy it is assumed that there is no particle motion, and all large atoms have
the same displacement from equilibrium, so that there is no energy due to SNIs. We make a
similar assumption for the small atoms so that

φ2n(t) = φ and ψ2n+1(t) = ψ. (2.2)

The potential energy is then a sum over identical and repeating cells. For each cell the energy
is

Vcell = k(φ − ψ)2 + 1
2Hφ

2 + 1
4h(ψ

2 − ψ
2
)2 (2.3)

which we think of as the energy density of the system. Minimizing this with respect to ψ
and φ leads to

0 = 2k(φ − ψ)− hψ(ψ2 − ψ
2
) 0 = 2k(φ − ψ) +Hφ (2.4)

the latter of which is solved by

φ = 2k

2k +H
ψ. (2.5)

Substituting (2.5) into (2.4) yields ψ = 0 or

ψ2 = ψ̃2 := Hhψ
2

+ 2k(hψ
2 −H)

h(H + 2k)
. (2.6)
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Figure 3. Bifurcation diagram, showing that for k > kc
there is only the trivial stationary solution, but that for
k < kc there are three stationary solutions, the zero
solution being unstable and the two nonzero solutions
(ψ = ±ψ̃) being stable.

Figure 4. Illustration of the symmetric arrangement of
smaller atoms which is the only stationary solution when
k > kc, where it is stable. This is also an unstable solution
in the case k < kc.

For ψ̃ to be real, we require H(hψ
2 − 2k) + 2khψ

2
> 0, thus the nonzero solution for ψ can

only exist if k < kc where

kc = Hhψ
2

2(H − hψ
2
)
. (2.7)

Figure 3 illustrates the stability of the system as a bifurcation diagram. For k > kc we
can see that the only solution is ψ = 0, which from (2.5) corresponds to φ = 0. Substitution

of φ = 0 = ψ into (2.3) yields the energy Vcell = 1
4hψ

4
. This solution is stable, since an

expansion of Vcell for small (ψ, φ) shows (0, 0) to be a minimum. The configuration of small
and large atoms in this case is illustrated in figure 4. When k < kc three solutions exist;
one solution is the zero solution described above. However, this solution is now unstable,
since ψ = 0, φ = 0 is now a saddle point of Vcell. The other solutions, ψ = ±ψ̃ with
φ = φ̃ := 2kψ̃/(2k +H), are stable, being minima of Vcell. Note that at minimum total energy
the small atom does not lie at the bottom of the on-site potential well (ψ of Vh), due to the
competing effect of the FNIs.

2.2. Equations of motion

From (2.1) we obtain the equations of motion

mψ̈2n+1 = k(φ2n+2 − 2ψ2n+1 + φ2n−2) + g(ψ2n+3 − 2ψ2n+1 + ψ2n−1)− hψ2n+1(ψ
2
2n+1 − ψ

2
)

(2.8)

Mφ̈2n = k(ψ2n+1 − 2φ2n + ψ2n−1) +G(φ2n+2 − 2φ2n + φ2n−2)−Hφ2n (2.9)

which describe the motion of the small and large atoms of the lattice respectively. The response
to small-amplitude disturbances can be determined from the system linearized about the zero
solution, by assumingφ2n(t) ∼ φ̃+φ̂ eiωt+2nip andψ2n+1(t) ∼ ψ̃+ψ̂ eiωt+(2n+1)ip with φ̂, ψ̂ � 1.
This yields the dispersion relation, ω = ω(p) for wavenumber p, for the system (2.8), (2.9) as

0 = Mmω4 − (mH + 2km + 2kM + 2Mhψ̃2 + 4gM sin2 p + 4Gm sin2 p)ω2

+(2hψ
2

+ 2k + 4g sin2 p)(H + 2k + 4G sin2 p)− 4k2 cos2 p. (2.10)
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Figure 5. Illustration of domain walls in a two-dimensional layer of a crystal. Atoms on the left are
in one minimum-energy configuration and the atoms on the right are in a different minimum-energy
configuration. Across the atoms in the centre of the figure there is a gradual transition from one
equilibrium state to the other.

Small disturbances about homogeneous solutions of the equations only determine the stability
of such states. We are concerned with the dynamics associated with larger-scale structure,
such as domain walls, as illustrated in figure 5. This figure illustrates the two situations in
which one equilibrium solution is approached in the limit n → −∞, and the other equilibrium
solution in the limit n → +∞.

3. Simple continuum theory

In this section we describe the reduction of the system of coupled differential-difference
equations (2.8) and (2.9) to a coupled pair of second-order partial differential equations,
which allow further analysis. We then seek travelling kink solutions to the resulting nonlinear
equations.

We begin by replacing the discrete variable, n, by a continuous counterpart, x,
in (2.8), (2.9). Taylor expansions then allow the original system to be rewritten as partial
differential equations. Thus we replace φn+2(t) by φ(x, t) + 2φx(x, t) + 2φxx(x, t), with
similar expressions holding for φn±1, ψn±1 etc. We expand (2.9) around x = 2n and (2.8)
around x = 2n + 1, which yields

mψtt = 4gψxx + kφxx − (hψ
2 − 2k)ψ + 2kφ − hψ3 (3.1)

Mφtt = 4Gφxx + kψxx − (H + 2k)φ + 2kψ (3.2)

where derivatives are denoted by subscripts. Fourth- and higher-order derivatives are neglected
since φ(x, t) and ψ(x, t) are assumed to be slowly varying in space.

Equations (3.1), (3.2) contain the eight original physical parameters, which can be reduced
by nondimensionalizing the system: using φ = �0�, ψ = �0�, t = T0T and x = X0X, we
find

�TT = �XX +�XX + α� +� −�3 (3.3)

�TT = β�XX + γ�XX + αγ� − ε� (3.4)

where

�0 = 4g

k

√
hψ

2 − 2k

h
�0 =

√
hψ

2 − 2k

h

X0 = 2

√
g

hψ
2 − 2k

T0 =
√

m

hψ
2 − 2k

(3.5)
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and

α = 8g

hψ
2 − 2k

β = Gm

gM
γ = k2m

16g2M
ε = m(2k +H)

M(hψ
2 − 2k)

. (3.6)

Here we are interested in the situation in which the on-site potential is strong enough to cause
the small atoms to be closer to one neighbouring larger atom than the other at equilibrium.

Thus we assume hψ
2 − 2k > 0. In these nondimensional variables the minimum-energy

configurations (2.5), (2.6) correspond to

� = ±�̃ = ±
√

1 +
γα2

ε
� = γα�̃

ε
. (3.7)

The existence of �̃ requires the inequality γα2/ε > −1 to be satisfied.

3.1. Solitary wave solution for special speed

In this subsection we briefly recap the existing continuum theory for diatomic lattices, before
generalizing the theory to arbitrary speeds in the next subsection. For the nonlinear problem
we search for travelling-wave solutions. Substitution of�(X, T ) = �(X− cT ) = �(Z) and
�(X, T ) = �(X − cT ) = �(Z) into (3.3) and (3.4) yields

(c2 − 1)� ′′ = �′′ + α� +� −�3 (3.8)

(c2 − β)�′′ = γ� ′′ + αγ� − ε�. (3.9)

Similar equations to these were obtained by Cretegny and Peyrard [5] and Peyrard et al [12],
who proceeded to consider the special speed c∗ = √

β, which reduces (3.9) to an algebraic
equation for �(Z)

� = γ

ε
� ′′ +

αγ

ε
�. (3.10)

This implies �′′ = αγ� ′′/ε since, in order to be consistent with the approximations we have
already made, fourth derivatives are ignored. Substituting these expressions into (3.8) yields
a second-order nonlinear ordinary differential equation for �(Z)

0 =
(
β − 1 − 2αγ

ε

)
� ′′ −

(
α2γ

ε
+ 1

)
� +�3. (3.11)

The first integral of this is

E = 1

2

(
1 +

2αγ

ε
− β

)
(� ′)2 +

1

2

(
1 +

αγ

ε

)
�2 − 1

4
�4 (3.12)

in which E can be thought of as an energy. A plot of E against �, � ′ appears qualitatively
like that displayed in figure 6. Level curves of the surface represent trajectories in (�,� ′)
phase space. Placed symmetrically either side of the minimum are two saddle points, which
represent the equilibrium values (� = ±�̃, � ′ = 0) joined by the homoclinic trajectory.

By imposing the boundary conditions � → �̃ and � ′ → 0 as Z → +∞, we find the
value ofE corresponding to the homoclinic connection, namelyE = 1

4 �̃
4; this enables (3.12)

to be integrated. We thus find

�(Z) = ±�̃ tanh(θ(Z − Z0)) where θ = 1

2

√
ε + γα2

2αγ + ε − βε
(3.13)

and Z0 is a constant of integration which determines the phase of the wave. Substitution of
�(Z) from (3.13) and its derivatives into (3.10) yields �(Z)

�(Z) = ±αγ �̃
ε

tanh(θ(Z − Z0))

(
1 − 2θ2

α
sech2(θ(Z − Z0))

)
. (3.14)
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1
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Figure 6. A plot of the quantity E defined in (3.12) against p = � and pp = � ′, for the case
α = 0.25, β = 1, γ = 1.4, ε = 1, c = 0.5.

3.2. Solitary wave solution for general speed

At this point it should be remembered that the analysis of the travelling wave solution
of (3.8), (3.9) so far presented in this section has been for the special speed c = c∗ = √

β,
which greatly simplifies equation (3.9). We now investigate solitary waves for general speeds.

As with the previous analysis we will begin by using (3.9) to eliminate�. Rewriting (3.9)
as

ε

(
1 +

c2 − β

ε

d2

dZ2

)
�(z) = αγ

(
1 +

1

α

d2

dZ2

)
�(Z) (3.15)

and noting that c2 = β, we invert the operator on the left-hand side, using the fact that to
second order (1 + K d2

dZ2 )
−1 = 1 − K d2

dZ2 . Applying such an inverse operator to both sides
of (3.15) and neglecting fourth-order derivatives we obtain

�(Z) = γα

ε

(
�(Z) +

(
αβ + ε − αc2

αε

)
� ′′(Z)

)
(3.16)

in place of (3.10) (though note that this reduces to (3.10) in the case c = c∗ = √
β). Substitution

of this expression along with its derivatives (�′′ = γα� ′′/ε since we neglect fourth-derivative
terms) into (3.8) yields(
(ε2 + 2γαε + γβα2)− c2(ε2 + α2γ )

ε2

)
� ′′ +

(
α2γ + ε

ε

)
� −�3 = 0 (3.17)

which can be integrated to

E = 1

2

(
(ε2 + 2γαε + γβα2)− c2(ε2 + α2γ )

ε2

)
(� ′)2 +

1

2

(
1 +

γα2

ε

)
�2 − 1

4
�4. (3.18)

The surfaceE = E(�,� ′) is shown in figure 6 for the case in which the coefficient of (� ′)2 is
positive. Level curves of this surface correspond to trajectories of the system in (�,� ′) phase
space. For there to be a trajectory joining the two equilibrium points, that is the saddle point
at (�= �̃,� = 0) to the other saddle point at (�=−�̃,� = 0), we require the coefficient
of (� ′)2 to be positive. This condition imposes a maximum speed on the system, above which
kink solutions of (3.17) do not exist: this speed is given by

cmax =
√
ε2 + 2γαε + α2βγ

ε2 + γα2
. (3.19)
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Figure 7. The second-order approximation to the travelling wave; �(Z) above, and �(Z) below,
in the case α = 0.25, β = 1.0, γ = 1.4, ε = 1.0, for the speeds c = 0, 0.5, 1.0, 1.2. Faster speeds
correspond to steeper gradients in the plot of�(Z), and larger-amplitude oscillations in�(Z) near
the origin.

Above this speed the equilibrium points (�,� ′) = (±�̃, 0) are transformed from saddle points
(as illustrated in figure 6) to maxima, consequently the trajectory joining them is destroyed.

Returning to (3.18) in the case c < cmax, we insert the boundary conditions � → �̃,
� ′ → 0 as Z → +∞ to find the constant E as E = 1

4 �̃
2. Equation (3.18) can then be

integrated to find the solution

�(Z) = �̃ tanh(θ(Z − Z0)) where θ = 1

2

√
ε(ε + γα2)

(ε2 + 2αγ ε + α2βγ )− c2(ε2 + γα2)
.

(3.20)

Substitution of this solution into (3.16) yields

�(Z) = γα

ε
tanh(θ(Z − Z0))

(
1 − 2θ2

εα
(αβ + ε − αc2)sech2(θ(Z − Z0))

)
. (3.21)

The shapes of these waves are illustrated in figure 7.
Notice that the oscillations near the origin of the graph of �(Z) increase in size with

increasing speed, but do not disappear in the limit of small speed; figure 7 shows the curves
for c = 0 and 0.5 being almost coincident. For the parameter values used in figure 7, the
maximum speed is cmax = 1.282. Note also that faster waves have reduced width in �(Z).
This is not so apparent in�(Z) due to the above-mentioned oscillations, but is manifest in the
more rapid decay to equilibrium at large values of |Z|.

4. Fourth-order quasi-continuum theory

In this section we extend the quasi-continuum approximation used in section 3, by incorporating
fourth-order derivatives from the Taylor series expansions of the difference terms as well as
the second-order derivatives already included. Thus we expect the results of this section to be
more accurate than those of section 3, at the expense of greater complication.

A fourth-order expansion of (2.8) and (2.9) yields the two coupled fourth-order partial
differential equations

mψtt = 4
3gψxxxx + 1

12kφxxxx + 4gψxx + kφxx − (hψ
2 − 2k)ψ + 2kφ − hψ3 (4.1)

Mφtt = 4
3Gφxxxx + 1

12kψxxxx + 4Gφxx + kψxx − (H + 2k)φ + 2kψ. (4.2)



7172 R B Tew and J A D Wattis

Applying the same nondimensionalization as in (3.5) and (3.6), we find the dimensionless
equations

�TT = 2

3α
�XXXX +

1

6α
�XXXX +�XX +�XX +� + α�−�3 (4.3)

�TT = 2β

3α
�XXXX +

γ

6α
�XXXX + β�XX + γ�XX − ε� + αγ�. (4.4)

To search for a travelling-wave solution we substitute �(X, T ) = �(X − cT ) = �(Z)

and �(X, T ) = �(X − cT ) = �(Z) into (4.3) and (4.4), yielding

0 = 2

3α
� ′′′′ +

1

6α
�′′′′ + (1 − c2)� ′′ +�′′ −� + α�−�3 (4.5)

0 = 2β

3α
�′′′′ +

γ

6α
� ′′′′ + (β − c2)�′′ + γ� ′′ − ε� + αγ�. (4.6)

The latter equation (4.6) is used to eliminate �(Z) from the former (4.5). We rewrite (4.6) as

ε

(
1 − (β − c2)

ε

d2

dZ2
− 2β

3αε

d4

dZ4

)
�(Z) = γα

(
1 +

1

α

d2

dZ2
+

1

6α2

d4

dZ4

)
�(Z). (4.7)

The operator which acts on the left-hand side can be inverted to fourth order to yield the
approximation

�(Z) = γα

ε

[
1 +

(
ε + αβ − αc2

αε

)
d2

dZ2
+

(
ε2 + 6αε(β − c2) + 6α2(β − c2)2

6α2ε2

)
d4

dZ4

]
�(Z).

(4.8)

This formula, together with its second and fourth derivatives can be inserted into (4.5) to obtain

�3 = Q4�
′′′′ +Q2�

′′ + �̃2� (4.9)

where

Q2 = 1

ε2

(
(ε2 + 2αγ ε + α2βγ )− (ε2 + α2γ )c2

)
Q4 = 2

3α
+
γ

3ε3

(
ε(ε + 2αβ) + 3(ε + αβ − αc2)2

)
.

(4.10)

Approximating the fourth-order derivative operator by a (2,2) Padé approximant we find

�3 =
(
Q2 −Q4

d2

dZ2

)−1 (
Q2�̃

2 + (Q2
2 −Q4�̃

2)
d2

dZ2

)
� (4.11)

which, on rearranging, yields the second-order nonlinear ordinary differential equation

Q2�
3 −Q2�̃

2� = d2

dZ2

(
Q4�

3 + (Q2
2 −Q4�̃

2)�
)
. (4.12)

Although this approximation has more nonlinear terms than were present in (4.9), it has reduced
the order of the equation, whilst retaining the fourth-order accuracy. Equation (4.12) can be
integrated further, by multiplying through by (3Q4�

2 +Q2
2 −Q4�̃

2)� ′ to obtain

E = 1
2 (�

′)2(3Q4�
2 +Q2

2 −Q4�̃
2)2 + 1

2 �̃
2Q2(Q

2
2 −Q4�̃

2)�2

+ 1
4Q2(4Q4�̃

2 −Q2
2)�

4 − 1
2Q2Q4�

6. (4.13)

Applying the boundary conditions � → �̃, � ′ → 0 as Z → ∞ yields the constant of
integration E as E = 1

4Q
3
2�̃

4, allowing the rearrangement of (4.13) to

[
3Q4�

2 +Q2
2 −Q4�̃

2
]2

(
d�

dz

)2

= Q2(�̃
2 −�2)

[
1
2Q

2
2�̃

2 − 1
2 (Q

2
2 +Q4�̃

2)�2 −Q4�
4
]
. (4.14)
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Figure 8. The travelling wave solution in the sublattice of smaller atoms. � is plotted against
Z(�) from (4.15) with dimensionless speed c = 0 on the left and c = 0.7 on the right. In each case
the second-order approximation is also displayed for comparison; in both cases the fourth-order
solution has the steeper gradient at the origin. The plots are for α = 10, β = 3, γ = 0.1, ε = 10.

Being separable, this can be integrated to give the implicit solution

Z(�) =
∫ �

0

2(3Q4u
2 +Q2

2 −Q4�̃
2) du√

2Q2(�̃2 − u2)[Q2
2�̃

2 − (Q4�̃2 +Q2
2)u

2 − 2Q4u4]
(4.15)

which is illustrated in figure 8.
The form of (4.14) suggests that kink-type solutions exist, � ′ having zeros at � = �̃

with �̃ defined in exactly the same way as in the second-order analysis (3.7). The terms in
square brackets in (4.14) generate a change in shape over the second-order tanh form (3.20).
A measure of the width of the solution is given by the reciprocal of the gradient of the kink at
Z = 0 (that is 1/� ′(0)); from (4.14) we have

� ′(0) = �̃2Q
3/2
2√

2 (Q2
2 −Q4�̃2)

(4.16)

whereas in the second-order theory we have, from (3.18), � ′(0) = �̃2/
√

2Q2. Thus the
presence of Q4 > 0 increases the gradient of the kink.

Equation (4.15) gives the implicit solutionZ(�) rather than�(Z) so finding� using (4.8)
is not trivial. We construct a parametric form �(�) noting that d

dZ = (1/Z′(�)) d
d� , so that

d�

dZ
= 1

Z′(�)
d2�

dZ2
= − Z′′(�)

Z′(�)3
d3�

dZ3
= 3Z′′(�)2 − Z′(�)Z′′′(�)

Z′(�)5
(4.17)

d4�

dZ4
= 10Z′(�)Z′′(�)Z′′′(�)− Z′(�)2Z′′′′(�)− 15Z′′(�)3

Z′(�)7
. (4.18)

These enable (4.8) to be used to produce plots of �(�) against Z(�) as illustrated in
figure 9. For the choice of parameters used here, the second-order approximation to �(Z)
does not have any oscillations; whereas the fourth-order accurate approximation does. This in
contrast with figure 7, where the second-order approximation undergoes a limited oscillation,
having two stationary points, whereas the oscillations of the fourth-order solution displayed
in figure 9 have four stationary points.
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Figure 9. The travelling wave solution in the sublattice of larger atoms. �(�) from (4.8) is plotted
against Z(�) from (4.15), using (4.17) and (4.18); on the left for speed c = 0, and on the right for
c = 0.35, in both cases for α = 10, β = 3, γ = 0.1, ε = 10. The fourth-order approximation
includes oscillations, which increase in amplitude with increasing speed.

5. Numerical results

Numerical simulations of the system (2.8) and (2.9) have been carried out using a fourth-order
Runge–Kutta scheme coded in Fortran90 with double-precision real variables. The program
solves the equations of motion for N atoms where N is even. Initial conditions are taken
from the second-order quasi-continuum solution (3.20), (3.21). We implement the boundary
conditions by introducing fictitious points at n = 0, −1 and n = N + 1, N + 2 so that
ψ1, φ2, ψN−1 and φN all have first and second neighbours. We then assume periodic boundary
conditions, so that at the ends of the lattice we have

ψ−1 = ψN−1 − 2ψ̃ ψN+1 = ψ1 + 2ψ̃
φ0 = φN − 2φ̃ φN+2 = φ2 + 2φ̃
ψ̇−1 = ψ̇N−1 ψ̇N+1 = ψ̇1

φ̇0 = φ̇N φ̇N+2 = φ̇2

(5.1)

where 2ψ̃ is the amplitude of the kink in the sublattice of the smaller atoms and 2φ̃ is the
amplitude of the kink in the sublattice of larger atoms. The parameter values used in this
section are G = 14.11, g = 14.10, M = 16.00, m = 8.00, H = 10.00, h = 18.00, k = 1.00,
ψ = 0.51. Various values for the timestep were tested, and all below dt = 0.01 gave the same
results so subsequent simulations were performed with this timestep.

5.1. Propagation through the lattice

Numerical simulations can be used to verify the predicted speed of a wave as it propagates
through the lattice. By launching the wave at a variety of speeds, and examining the speed
of the wave during and at the end of the simulation, we can gauge the accuracy of our initial
condition and evaluate the mobility of the wave as it propagates through the lattice. Results
indicating the initial and final speeds of the wave are shown in table 1. In each simulation the
wave was initially launched from lattice site n = 100 in the direction of larger n, on a lattice
of size N = 5000 atoms. The simulation was carried out over a time interval of 0 < t < 280
or until the wave reached a position 100 sites from the end of the lattice (i.e. n = 4900). The
speed was measured as an average over a time interval of length 21. An illustration of the
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Table 1. Table showing the efficiency of wave propagation through a lattice of 5000 sites.

Dimensionless Dimensional Dimensional speed Percentage
launch speed launch speed at end of lattice difference

0.10 0.266 0.458 72.2%
0.20 0.531 0.861 62.1%
0.30 0.797 1.157 45.2%
0.40 1.062 1.466 38.0%
0.50 1.328 1.499 9.7%
0.60 1.593 1.629 2.3%√

β ≈ 0.71 1.878 1.803 −4.0%
0.80 2.124 1.969 −07.3%
0.90 2.390 1.812 −24.2%
0.95 2.522 1.846 −26.8%

propagation of a solitary wave through the lattice is shown in figure 10, where the total number
of lattice sites has been restricted to N = 500, and the time to 0 < t < 40. In this figure it is
possible to see a small amount of radiation emerge from the solitary wave at small times as the
wave adjusts from the shape given by the initial conditions to a slightly different shape more
appropriate to the discrete nature of the lattice. Following this the propagation of the wave
through the lattice is remarkably clean, with very little radiation being shed at later times. Due
to the periodic boundary conditions, small-amplitude linear waves leaving n = 0 travelling in
the negative n direction reappear at n = N .

time, t

site, n

Figure 10. The propagation of a solitary wave through the sublattice of smaller atoms (ψn(t)).
Note the small amount of radiation given off as the initial conditions adjust to the lattice, followed
by the almost lossless propagation of the resulting modified wave through the lattice.
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Figure 11. An enlargement of the tail of a solitary wave travelling at nondimensional speed of 0.9.
The figure shows the effect on the sublattice of small atoms (ψn) for times 30 < t < 45 and lattice
sites 1 < n < 500, and illustrates the small-amplitude radiation which is shed from the solitary
wave as it travels through the lattice.

From the results presented in table 1, we see that slow waves are accelerated by the lattice,
and fast waves are decelerated by the lattice. The speed of the wave thus appears to tend to an
intermediate speed, which is approximately equal to the critical speed of c∗ = √

β. It should
also be noted that the change in speed occurs slowly and gradually over a large period of time.
Even after a time of 280 a wave initially travelling at a dimensional speed of 0.266 has only
been accelerated to a speed of 0.458; it will thus take an extremely long time to approach the
critical speed, which in this case is about 1.8. However, since the simulations initiated at larger
speeds also show a convergence of speed over time to

√
β, we assume that given enough time

and a large enough lattice a wave started at a speed of 0.266 will eventually be accelerated
to 1.8. Thus, as well as making the analysis of travelling waves simpler, the special speed
c∗ = √

β seems to play an important physical role in the propagation of energy through the
lattice.

Figure 11 shows that the propagation of the solitary wave through the lattice is not perfectly
lossless, and is accompanied by a small amount of radiation. The initial speed in this case
was chosen near the upper limit of allowable velocities to highlight the losses, as this is one
of the more extreme cases. At speeds close to

√
β, the losses are less noticeable. A similar

slow evolution of speed of a kink in a discrete system was noted in a detailed study by Peyrard
and Kruskal [11] for the DSG system. In this monatomic system with only FNIs, the kink is
slowed down, converging to a velocity of zero. The convergence was not simple, however,
but has long periods of very slow reduction in speed, punctuated by faster reductions in speed
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Figure 12. The collision between two solitary waves: displacements of the sublattice of small
atoms (ψn). The near wave starts from the position n = 100, initially moving to the right at a
dimensionless speed of c = 0.4, and the far wave starts at lattice site n = 400 and moves left
(towards the reader), at a dimensionless speed of c = −0.4.

when the velocity coincides with certain well defined values independent of its launch velocity.
These values correspond to wavenumbers where the frequency at which the kink passes over
lattice sites matches the dispersion relation for small-amplitude linear waves. We expect a
similar mechanism to hold for velocity changes of the kink in this more complicated lattice.

5.2. Collisions of solitary waves

Figure 12 illustrates the effect on the smaller atoms (that is, the ψn(t) variables) of a collision
between two solitary waves travelling in opposite directions but with the same speed. The
system is thus symmetric, and in the example illustrated, the dimensionless speed was 0.4.
The initial conditions are taken from the second-order quasi-continuum theory, (3.20), (3.21).
As in the simulations described earlier, a small amount of radiation is emitted from the waves
at small times as their shape is modified by the discrete structure of the lattice. At the collision
the two waves annihilate each other producing a burst of radiation, which then spreads from the
collision site to the whole lattice. Since the system is energy conserving, the energy dispersed
is the same as the initial energy of the two solitary waves.

The effect of a nonsymmetric collision on the displacements of the larger atoms (φn(t))
is illustrated in figure 13. In these variables the kink has a much smaller amplitude than in
the ψn(t) variables, with the consequence that the radiation emitted in this sublattice has a
larger relative amplitude and is thus more noticeable. One solitary wave starts at the lattice
site n = 60 and travels towards sites with larger numbers, initially at the extremely slow
dimensionless speed of +0.01. As it progresses through lattice sites significant radiation is
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Figure 13. A collision between two kinks travelling in opposite directions and at different speeds:
the displacements of the sublattice of larger atoms (φn). The near wave starts at lattice site n = 60
and travels to larger-numbered sites at a dimensionless speed of c = +0.01, and the second wave
starts at lattice site n = 175 and at nondimensional speed of c = −0.4. The collision approximately
occurs at site n = 100 and time t = 30.

generated and spread to the lattice both behind and in front of the kink; this is due to the effect
of the Peierls–Nabarro potential. The second solitary wave starts at the lattice site n = 174
and travels at a nondimensional speed of −0.4 towards lattice sites of smaller number. A small
amount of radiation can be seen to emerge from this wave as it initially adjusts its shape to
the lattice. It is also apparent from figure 13 that the propagation of the second, faster wave is
not affected by the noise generated by the first wave. The noise released from the slow wave
passes through the fast wave with little effect, illustrating the stability and robustness of the
wave. As in the symmetric collision illustrated in figure 12, the two solitary waves annihilate
each other on impact and their energy is released and radiated to the lattice.

6. Discussion

This paper has introduced a new model for the study of diatomic lattices which include FNIs
and SNIs together with on-site potentials for both the larger and smaller atoms. This is a
modification of the models studied by Peyrard et al in [12] and [5], and Henry and Oitmaa [9].
Our model exhibits two types of equilibrium solution. If the FNIs are sufficiently attractive
then the lowest-energy state of the chain has the atoms equally spaced. However, the more
interesting scenario occurs when the on-site potential for the small atoms is dominant and at
lowest energy each small atom lies close to one of the neighbouring larger atoms. There are
then two equal-energy ground states: one where all small atoms are closer to the larger atom
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on their left, and a second state where they lie closer to the right large atom. Following the
quench of such a chain, one expects to find regions in which all smaller atoms occupy the same
state, and smaller regions (domain walls) where a transition between the two states occurs.
Thus the main body of this paper addresses systems in which one ground state is approached
at one end of a chain in the lattice, and the other ground state at the other end of the chain.
Such transition regions are modelled as solitary waves (kinks) and the remainder of the paper
addresses the shape and mobility of these waves.

The majority of existing quasi-continuum techniques have been limited by their ability
to predict the shape of the solitary wave only for one special speed of propagation through
the lattice. This is caused by the equations of motion yielding two coupled sets of equations:
one for the smaller atoms and a second for the larger atoms; only at one special speed do
they decouple. One purpose of this paper is to generalize quasi-continuum techniques so
that solutions of arbitrary speed can be found; we have achieved this by showing how to
decouple the system of equations, so that at arbitrary speeds the solution in the sublattice of
smaller atoms can be solved, and then used to find the solution for the larger atoms. Similar
results have been obtained by Henry and Oitmaa on a simpler lattice [9]. Applying second-
order quasi-continuum theory to the discrete system for general speeds, we derived analytical
approximations for kink-type solutions. Our results show that faster waves are narrower than
slower waves. The analytic form shows that there is a maximum speed for kinks, though this
is not the same as the special speed for which the previously available continuum theory gave
a solution.

We then extended the continuum theory to include fourth-order derivatives. Quasi-
continuum theory was again applied and Padé approximations used to derive travelling wave
solutions for a range of speeds. On plotting these solutions and comparing them with those
correct to second order, we discovered that the higher-order solutions have a slightly smaller
width than the second-order solutions derived earlier. The analytical results give an indication
of why fast waves do not propagate through the lattice. At larger speeds, the wave in
the sublattice of larger atoms develops large oscillations, see figures 7 and 9. While both
approximations show oscillations in the shape of the kink, two types of oscillation are observed:
in the second-order theory (figure 7) the oscillation is centred on the unstable zero-equilibrium
solution, whereas the fourth-order solution (figure 9) exhibits an additional oscillation around
the stable equilibrium solution � = ±�̃ before crossing the unstable zero solution.

Extensive numerical simulations of the discrete system confirmed the quasi-continuum
theory to be accurate and that a kink propagates well when launched at a variety of speeds
from small, through the special speed (cc = √

β) identified in the previous continuum theory,
up to the maximum speed found in our theory. Thus our model differs from the model studied
by Peyrard et al [12], in which waves initiated at a speed faster than the special speed do
not propagate through the lattice. However, over long time simulations it appeared from our
results that waves prefer to travel at this special speed (cc). The waves adjust to this speed
by the emission of radiation; we expect this loss of energy to be due to the Peierls–Nabarro
potential of the lattice. This speed was identified as being special in the analytical work as
the speed which mathematically greatly simplifies the system. We suggest that at this speed
the lattice also experiences a minimum stress due to the wave. Note that this includes the
counter-intuitive behaviour of waves losing energy by speeding up; a similar phenomenon has
been observed previously in a lattice with SNIs [18], where slower waves actually carry more
energy than faster ones.

We were also able to investigate how waves interact with each other in collisions—which
cannot be deduced analytically. The collision of a kink with an antikink travelling in the
opposite direction leads to the destruction of both waves, the energy of both waves being
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emitted as radiation. At the start of the simulation, the solitary wave adjusted its shape very
slightly from the continuum approximation used as initial conditions to the shape appropriate
for the discrete lattice. This adjustment results in the emission of a small amount of radiation,
which the kink then travels over, without any obvious change in shape or speed. Thus the
kinks appear to be stable and robust to noise in the system.

Open questions remain for the lattice we have studied here, for example we have not
tackled the existence of breathers, either stationary or moving; nor have we attempted the
extremely delicate numerical tests needed to find the size and shape of the Peierls–Nabarro
potential for the system.
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